Leptin signaling in vagal afferent neurons supports the absorption and storage of nutrients from high-fat diet

1. Travagli RA, Anselmi L. Vagal neurocircuitry and its influence on gastric motility. Nat Rev Gastroenterol Hepatol. 2016;13:389–401. CAS  PubMed  PubMed Central  Google Scholar  2. Ashley Blackshaw L, Grundy D, Scratcherd T. Vagal afferent discharge from gastric mechanoreceptors during contraction and relaxation of the ferret corpus. J Auton Nerv Syst. […]

  • 1.

    Travagli RA, Anselmi L. Vagal neurocircuitry and its influence on gastric motility. Nat Rev Gastroenterol Hepatol. 2016;13:389–401.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    Ashley Blackshaw L, Grundy D, Scratcherd T. Vagal afferent discharge from gastric mechanoreceptors during contraction and relaxation of the ferret corpus. J Auton Nerv Syst. 1987;18:19–24.


    Google Scholar
     

  • 3.

    Becker JM, Kelly KA. Antral control of canine gastric emptying of solids. Am J Physiol Liver Physiol. 1983;245:G334–8.

    CAS 

    Google Scholar
     

  • 4.

    Raybould HE, Tache Y. Cholecystokinin inhibits gastric motility and emptying via a capsaicin-sensitive vagal pathway in rats. Am J Physiol Liver Physiol. 1988;255:G242–6.

    CAS 

    Google Scholar
     

  • 5.

    Rehfeld JF. Cholecystokinin – from local gut hormone to ubiquitous messenger. Front Endocrinol (Lausanne). 2017;8:47.


    Google Scholar
     

  • 6.

    Cammisotto P, Bendayan M. A review on gastric leptin: the exocrine secretion of a gastric hormone. Anat Cell Biol. 2012;45:1–16.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Ravussin Y, Leibel RL, Ferrante AW. A missing link in body weight homeostasis: the catabolic signal of the overfed state. Cell Metab. 2014;20:565–72.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Buyse M, Ovesjö M-L, Goïot H, Guilmeau S, Péranzi G, Moizo L, et al. Expression and regulation of leptin receptor proteins in afferent and efferent neurons of the vagus nerve. Eur J Neurosci. 2001;14:64–72.

    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Burdyga G, Spiller D, Morris R, Lal S, Thompson DG, Saeed S, et al. Expression of the leptin receptor in rat and human nodose ganglion neurones. Neuroscience. 2002;109:339–47.

    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Peiser C, Springer J, Groneberg DA, McGregor GP, Fischer A, Lang RE. Leptin receptor expression in nodose ganglion cells projecting to the rat gastric fundus. Neurosci Lett. 2002;320:41–4.

    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Peters JH, Ritter RC, Simasko SM. Leptin and CCK selectively activate vagal afferent neurons innervating the stomach and duodenum. Am J Physiol Integr Comp Physiol. 2006;290:R1544–9.

    CAS 

    Google Scholar
     

  • 12.

    Peters JH, Karpiel AB, Ritter RC, Simasko SM. Cooperative activation of cultured vagal afferent neurons by leptin and cholecystokinin. Endocrinology. 2004;145:3652–7.

    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Peters JH, Ritter RC, Simasko SM. Leptin and CCK modulate complementary background conductances to depolarize cultured nodose neurons. Am J Physiol Physiol. 2006;290:C427–32.

    CAS 

    Google Scholar
     

  • 14.

    Kentish SJ, O’Donnell TA, Isaacs NJ, Young RL, Li H, Harrington AM, et al. Gastric vagal afferent modulation by leptin is influenced by food intake status. J Physiol. 2013;591:1921–34.

    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Barrachina MD, Martínez V, Wang L, Wei JY, Taché Y. Synergistic interaction between leptin and cholecystokinin to reduce short-term food intake in lean mice. Proc Natl Acad Sci. 1997;94:10455–60.

    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    deLartigue G, Barbier de la Serre C, Espero E, Lee J, Raybould HE. Leptin resistance in vagal afferent neurons inhibits cholecystokinin signaling and satiation in diet induced obese rats. PLoS ONE. 2012;7:e32967.

    CAS 

    Google Scholar
     

  • 17.

    deLartigue G, Ronveaux CC, Raybould HE. Deletion of leptin signaling in vagal afferent neurons results in hyperphagia and obesity. Mol Metab. 2014;3:595–607.

    CAS 

    Google Scholar
     

  • 18.

    Huang K-P, Ronveaux CC, deLartigue G, Geary N, Asarian L, Raybould HE. Deletion of leptin receptors in vagal afferent neurons disrupts estrogen signaling, body weight, food intake and hormonal controls of feeding in female mice. Am J Physiol Endocrinol Metab. 2019;316:E568–77.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Huang K-P, Ronveaux CC, Knotts TA, Rutkowsky JR, Ramsey JJ, Raybould HE. Sex differences in response to short-term high fat diet in mice. Physiol Behav. 2020;221:112894.

    PubMed 

    Google Scholar
     

  • 20.

    Fraser KA, Davison JS. Cholecystokinin-induced c-fos expression in the rat brain stem is influenced by vagal nerve integrity. Exp Physiol. 1992;77:225–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Wang L, Martı́nez V, Barrachina MD, Taché Y. Fos expression in the brain induced by peripheral injection of CCK or leptin plus CCK in fasted lean mice. Brain Res. 1998;791:157–66.

    CAS 
    PubMed 

    Google Scholar
     

  • 22.

    Bates SL, Sharkey KA, Meddings JB. Vagal involvement in dietary regulation of nutrient transport. Am J Physiol. 1998;274:G552–60.

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Stearns AT, Balakrishnan A, Rounds J, Rhoads DB, Ashley SW, Tavakkolizadeh A. Capsaicin-sensitive vagal afferents modulate posttranscriptional regulation of the rat Na+/glucose cotransporter SGLT1. Am J Physiol Gastrointest Liver Physiol. 2008;294:G1078–83.

    CAS 
    PubMed 

    Google Scholar
     

  • 24.

    Stearns AT, Balakrishnan A, Rhoads DB, Tavakkolizadeh A. Rapid upregulation of sodium-glucose transporter SGLT1 in response to intestinal sweet taste stimulation. Ann Surg. 2010;251:865–71.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Lo C, King A, Samuelson LC, Kindel TL, Rider T, Jandacek RJ, et al. Cholecystokinin knockout mice are resistant to high-fat diet-induced obesity. Gastroenterology. 2010;138:1997–2005.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Jandacek RJ, Heubi JE, Tso P. A novel, noninvasive method for the measurement of intestinal fat absorption. Gastroenterology. 2004;127:139–44.

    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Duwaerts CC, Maher JJ. Macronutrients and the adipose-liver axis in obesity and fatty liver. Cell Mol Gastroenterol Hepatol. 2019;7:749–61.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Morrison CD. Leptin resistance and the response to positive energy balance. Physiol Behav. 2008;94:660–3.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Flier JS, Maratos-Flier E. Leptin’s physiologic role: does the emperor of energy balance have no clothes? Cell Metab. 2017;26:24–6.

    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Leon Mercado L, Caron A, Wang Y, Burton M, Gautron L. Identification of leptin receptor–expressing cells in the nodose ganglion of male mice. Endocrinology. 2019;160:1307–22.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Bouret SG, Draper SJ, Simerly RB. Trophic action of leptin on hypothalamic neurons that regulate feeding. Science (80-). 2004;304:LP–110.


    Google Scholar
     

  • 32.

    Bouret SG, Gorski JN, Patterson CM, Chen S, Levin BE, Simerly RB. Hypothalamic neural projections are permanently disrupted in diet-induced obese rats. Cell Metab. 2008;7:179–85.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Ramos-Lobo AM, Teixeira PDS, Furigo IC, Melo HM, deMLyraeSilva N, DeFelice FG, et al. Long-term consequences of the absence of leptin signaling in early life. Elife. 2019;8:e40970.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Wei W, Pham K, Gammons JW, Sutherland D, Liu Y, Smith A, et al. Diet composition, not calorie intake, rapidly alters intrinsic excitability of hypothalamic AgRP/NPY neurons in mice. Sci Rep. 2015;5:16810.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Vaughn AC, Cooper EM, DiLorenzo PM, O’Loughlin LJ, Konkel ME, Peters JH, et al. Energy-dense diet triggers changes in gut microbiota, reorganization of gut‑brain vagal communication and increases body fat accumulation. Acta Neurobiol Exp (Wars). 2017;77:18–30.


    Google Scholar
     

  • 36.

    deLartigue G. Role of the vagus nerve in the development and treatment of diet-induced obesity. J Physiol. 2016;594:5791–815.

    CAS 

    Google Scholar
     

  • 37.

    Stearns AT, Balakrishnan A, Radmanesh A, Ashley SW, RhoadsDB, Tavakkolizadeh A. Relative contributions of afferent vagal fibers to resistance to diet-induced obesity. Dig Dis Sci. 2012;57:1281–90.

    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    Ferrari B, Arnold M, Carr RD, Langhans W, Pacini G, Bodvarsdóttir TB, et al. Subdiaphragmatic vagal deafferentation affects body weight gain and glucose metabolism in obese male Zucker (fa/fa) rats. Am J Physiol Integr Comp Physiol. 2005;289:R1027–34.

    CAS 

    Google Scholar
     

  • 39.

    López-Soldado I, Fuentes-Romero R, Duran J, Guinovart JJ. Effects of hepatic glycogen on food intake and glucose homeostasis are mediated by the vagus nerve in mice. Diabetologia. 2017;60:1076–83.

    PubMed 

    Google Scholar
     

  • 40.

    Gao X, van derVeen JN, Zhu L, Chaba T, Ordoñez M, Lingrell S, et al. Vagus nerve contributes to the development of steatohepatitis and obesity in phosphatidylethanolamine N-methyltransferase deficient mice. J Hepatol. 2015;62:913–20.

    CAS 
    PubMed 

    Google Scholar
     

  • 41.

    Rituraj K, Jennifer T, Christopher B, Khosrow A, Qiaozhu S. GLP-1 elicits an intrinsic gut–liver metabolic signal to ameliorate diet-induced VLDL overproduction and insulin resistance. Arterioscler Thromb Vasc Biol. 2017;37:2252–9.


    Google Scholar
     

  • 42.

    Barella LF, Miranda RA, Franco CCS, Alves VS, Malta A, Ribeiro TAS, et al. Vagus nerve contributes to metabolic syndrome in high-fat diet-fed young and adult rats. Exp Physiol. 2015;100:57–68.

    CAS 
    PubMed 

    Google Scholar
     

  • 43.

    Holland J, Sorrell J, Yates E, Smith K, Arbabi S, Arnold M, et al. A brain-melanocortin-vagus axis mediates adipose tissue expansion independently of energy intake. Cell Rep. 2019;27:2399–410. e6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Kral JG, Gortz L. Truncal vagotomy in morbid obesity. Int J Obes. 1981;5:431–5.

    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Ikramuddin S, Blackstone RP, Brancatisano A, Toouli J, Shah SN, Wolfe BM, et al. Effect of reversible intermittent intra-abdominal vagal nerve blockade on morbid obesity: the recharge randomized clinical trial. JAMA. 2014;312:915–22.

    CAS 
    PubMed 

    Google Scholar
     

  • 46.

    Apovian CM, Shah SN, Wolfe BM, Ikramuddin S, Miller CJ, Tweden KS, et al. Two-year outcomes of vagal nerve blocking (vBloc) for the Treatment of obesity in the ReCharge trial. Obes Surg. 2017;27:169–76.

    PubMed 

    Google Scholar
     

  • 47.

    Lund ML, Egerod KL, Engelstoft MS, Dmytriyeva O, Theodorsson E, Patel BA, et al. Enterochromaffin 5-HT cells—a major target for GLP-1 and gut microbial metabolites. Mol Metab. 2018;11:70–83.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Browning KN. Role of central vagal 5-HT3 receptors in gastrointestinal physiology and pathophysiology. Front Neurosci. 2015;9:413.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Taher J, Baker CL, Cuizon C, Masoudpour H, Zhang R, Farr S, et al. GLP-1 receptor agonism ameliorates hepatic VLDL overproduction and de novo lipogenesis in insulin resistance. Mol Metab. 2014;3:823–33.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Yue JTY, Abraham MA, LaPierre MP, Mighiu PI, Light PE, Filippi BM, et al. A fatty acid-dependent hypothalamic–DVC neurocircuitry that regulates hepatic secretion of triglyceride-rich lipoproteins. Nat Commun. 2015;6:5970.

    CAS 
    PubMed 

    Google Scholar
     

  • Source Article

    Next Post

    Minority of teens receive health care transition planning

    Sun Sep 13 , 2020
    A minority of adolescents with diagnosed mental, behavioral, and developmental disorders (MBDDs) receive recommended health care transition planning, according to research published in the Aug. 27 issue of the U.S. Centers for Disease Control and Prevention Morbidity and Mortality Weekly Report. Rebecca T. Leeb, Ph.D., from the CDC in Atlanta, […]